There are distinct advantages of lead-acid battery technology compared to lithium-ion battery & other electrochemical systems. Affordability, reliability, recyclability and safety are key issues in choosing the right battery for a particular application and lead-acid batteries will score highly in these categories. There is, however, a drawback when using conventional flooded lead-acid batteries for deep cycle applications. This is the maintenance required in topping up the batteries due to water loss by gassing. In many applications, like in traction battery applications, there is a need to completely recharge a battery in a limited time frame.
This normally will require higher voltages which in turn leads to the breakdown and loss of water from the electrolyte through gassing. These flooded lead-acid batteries will require topping up with water, creating inconvenience and costs and in large installations which often requires expensive extraction equipment. There are also other disadvantages, particularly with transport, storage and disposal. The liquid acid in the lead-acid battery is classified as a hazardous material for transport. Whilst this is not considered a problem within the industry, which operates using safe and proven procedures, it is much better to immobilise the acid to prevent spillages.
They also provide the added benefit of recombining the gases released on charge to reform water, thereby removing the need for the water-addition maintenance procedures mentioned earlier for flooded lead-acid batteries. Out of these two methods, the use of silica-gelled electrolyte is universally recognised as the best solution for deep discharge tubular gel battery designs. There are two main reasons for this: the first is that the use of gelled electrolyte allows a tubular positive plate to be used, which is recognised as providing the best deep cycle properties for lead-acid batteries. The second reason is that the stratification of acid associated with deep discharges and limited-voltage recharging without gassing is avoided, in tubular gel battery.
管狀凝膠電池 - 主要優點。
These are significant advantages if you have deep cycle requirements as in solar battery applications. The use of tubular plate batteries provides the most robust lead-acid tubular gel battery design with the highest deep cycle capability of all lead-acid designs. The resistance to stratification, in tubular gel battery is of great benefit in many applications which operate at partial state of charge (PSoC) such as standby power, UPS and Solar Energy clean environment markets.
There are also those clean environments where charging batteries can produce damaging or even explosive fumes, particularly in confined spaces. This is particularly relevant for batteries used in computer backup and medical equipment applications where batteries are kept in cabinets or inside complex and sensitive equipment. To remove fumes from charging batteries it is sometimes necessary to install expensive extraction equipment to remove explosive hydrogen gas and corrosive acid fumes from confined spaces in cabinets or equipment.
線性距離 a 到 c 中包含的板區域取決於板長度 L。 假設兩個板的板長度 L 相同,則平板和管狀板設計的一個板面的酸接觸面積將分別通過以下方式定義: 長度 a 到 c (AC) 時間 L 和弧線 ab 和 bc 時間 L 的長度。 平板單側接觸區域 = ca x L。 管狀板單側接觸區域 = (弧 ab = arc bc) x L x (管 – 1 無)
平板一個表面的酸接觸面積 = L x ca。 管板一個表面的酸接觸面積 = (L x = x ca)/2。 管狀板面積與平板面積的比率 = (L x + x ca)/2 (L x ca) 管面/平板的近似理論面積增加 = +/2=1.6。 這忽略了平板板的板邊和柵格框架。
This is not the cheapest material and self-manufactured not the most convenient way of obtaining the components for lead-acid tubular gel battery, but it does give the best form of control to meet the demanding quality standards for which Microtex tubular gel battery are renowned. Tailor-made lead calcium tin alloys used in the positive tubular plates and flat negative plates almost eliminate the hydrogen and oxygen gases produced on a charge. Because the volumes of gas produced are not excessive (as with conventional flooded battery designs) they can be recombined to form water within the operating pressure of the SMF battery. Because the Microtex alloys produce so little gas, premature failure due to water loss is prevented.
The tubular gel battery banks are fully insulated and designed to carry the high loads necessary for occasional or frequent high-rate discharges. The complete range of 2v OPzV tubular gel battery provides for applications like telecom, solar, standby, switchgear and controls, power generating stations and substations, nuclear and thermal power stations, electricity transmission substations with reliable and durable backup power and energy storage.